Multi-graph convolutional network for a remote sensing image few shot classification

نویسندگان

چکیده

å°æ ·æœ¬å­¦ä¹ æ—¨åœ¨åˆ©ç”¨éžå¸¸å°‘çš„ç›‘ç£ä¿¡æ¯è¯†åˆ«å‡ºæ–°çš„ç±»åˆ«ï¼Œç”±äºŽå¿½è§†äº†æ ·æœ¬ä¹‹é—´çš„å ³è”ä¿¡æ¯ï¼ŒçŽ°æœ‰çš„å°æ ·æœ¬åˆ†ç±»æ–¹æ³•ç”¨äºŽé¥æ„Ÿå›¾åƒå°æ ·æœ¬åˆ†ç±»æ—¶å¾€å¾€ä¸èƒ½èŽ·å¾—ä»¤äººæ»¡æ„çš„ç²¾åº¦ã€‚ä¸ºæ­¤ï¼Œæœ¬æ–‡åˆ©ç”¨å›¾æ¥å»ºæ¨¡å›¾åƒåœ¨ç‰¹å¾ç©ºé—´çš„ç›¸ä¼¼å ³ç³»ï¼Œä½¿ç”¨å›¾å·ç§¯è¿ç®—å¹³æ»‘åŒç±»åˆ«å›¾åƒçš„ç‰¹å¾ï¼Œå¢žå¼ºä¸åŒç±»åˆ«å›¾åƒç‰¹å¾çš„åŒºåˆ†åº¦ï¼Œæå‡åˆ†ç±»ç²¾åº¦ã€‚æ‰€ææ–¹æ³•åœ¨çŽ°æœ‰å›¾å·ç§¯è¿ç®—çš„åŸºç¡€ä¸Šï¼Œä½¿ç”¨å¤šé˜¶æ¬¡çš„é‚»æŽ¥çŸ©é˜µçº¿æ€§åŠ æƒçš„æ–¹æ³•ä»£æ›¿ä¼ ç»Ÿçš„ä¸€é˜¶é‚»æŽ¥çŸ©é˜µï¼Œé€šè¿‡å›¾è°±åˆ†æžå¾—å‡ºè¿™ç§æ”¹è¿›æ–¹æ³•èƒ½å¤Ÿè®©ä¸åŒé˜¶æ¬¡é‚»æŽ¥çŸ©é˜µçš„é¢‘çŽ‡å“åº”å‡½æ•°åœ¨é«˜é¢‘éƒ¨åˆ†æ­£è´Ÿç›¸æŠµï¼Œæœ‰æ•ˆæŠ‘åˆ¶å›¾ä¿¡å·çš„é«˜é¢‘åˆ†é‡ï¼Œæ›´æ˜¾è‘—çš„æå‡åŒç±»åˆ«èŠ‚ç‚¹ç‰¹å¾çš„èšé›†ç¨‹åº¦ï¼›åŒæ—¶ï¼Œåœ¨è®­ç»ƒè¿‡ç¨‹å¼•å ¥äº†å¾®è°ƒçš„æ–¹æ³•ï¼Œä½¿ç”¨æ–°ç±»åˆ«ä¸­çš„æ ‡è®°æ•°æ®å¯¹æœ€åŽä¸€å±‚å›¾å·ç§¯ç½‘ç»œè¿›è¡Œå°‘é‡æ¬¡æ•°çš„è®­ç»ƒï¼Œèƒ½å¤Ÿè¿›ä¸€æ­¥æé«˜ç²¾åº¦ï¼Œå¢žå¼ºæ¨¡åž‹çš„è¿ç§»èƒ½åŠ›ã€‚å®žéªŒä½¿ç”¨AID、OPTIMAL31以及RSI-CB256这3ä¸ªå¸¸ç”¨çš„é¥æ„Ÿæ•°æ®é›†å¯¹æ–¹æ³•çš„æœ‰æ•ˆæ€§è¿›è¡Œäº†æµ‹è¯•ï¼Œç»“æžœè¡¨æ˜Žæå‡ºçš„æ–¹æ³•åœ¨åŒæ•°æ®é›†å°æ ·æœ¬åˆ†ç±»ä»»åŠ¡å’Œè·¨æ•°æ®é›†å°æ ·æœ¬åˆ†ç±»ä»»åŠ¡ä¸­ï¼Œåœ¨åˆ†ç±»ç²¾åº¦æ–¹é¢å‡ä¼˜äºŽåŽŸåž‹ç½‘ç»œç­‰æ¯”è¾ƒæ–¹æ³•ã€‚

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-temporal remote sensing image classification - A multi-view approach

Multispectral remote sensing images have been widely used for automated land use and land cover classification tasks. Often thematic classification is done using single date image, however in many instances a single date image is not informative enough to distinguish between different land cover types. In this paper we show how one can use multiple images, collected at different times of year (...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Remote Sensing Image Analysis via a Texture Classification Neural Network

In this work we apply a texture classification network to remote sensing image analysis. The goal is to extract the characteristics of the area depicted in the input image, thus achieving a segmented map of the region. We have recently proposed a combined neural network and rule-based framework for texture recognition. The framework uses unsupervised and supervised learning, and provides probab...

متن کامل

Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network

As a variant of Convolutional Neural Networks (CNNs) in Deep Learning, the Fully Convolutional Network (FCN) model achieved state-of-the-art performance for natural image semantic segmentation. In this paper, an accurate classification approach for high resolution remote sensing imagery based on the improved FCN model is proposed. Firstly, we improve the density of output class maps by introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2022

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20210522